Feast or flee: bioelectrical regulation of feeding and predator evasion behaviors in the planktonic alveolate Favella sp. (Spirotrichia).

نویسندگان

  • Michael L Echevarria
  • Gordon V Wolfe
  • Alison R Taylor
چکیده

Alveolate (ciliates and dinoflagellates) grazers are integral components of the marine food web and must therefore be able to sense a range of mechanical and chemical signals produced by prey and predators, integrating them via signal transduction mechanisms to respond with effective prey capture and predator evasion behaviors. However, the sensory biology of alveolate grazers is poorly understood. Using novel techniques that combine electrophysiological measurements and high-speed videomicroscopy, we investigated the sensory biology of Favella sp., a model alveolate grazer, in the context of its trophic ecology. Favella sp. produced frequent rhythmic depolarizations (∼500 ms long) that caused backward swimming and are responsible for endogenous swimming patterns relevant to foraging. Contact of both prey cells and non-prey polystyrene microspheres at the cilia produced immediate mechanostimulated depolarizations (∼500 ms long) that caused backward swimming, and likely underlie aggregative swimming patterns of Favella sp. in response to patches of prey. Contact of particles at the peristomal cavity that were not suitable for ingestion resulted in depolarizations after a lag of ∼600 ms, allowing time for particles to be processed before rejection. Ingestion of preferred prey particles was accompanied by transient hyperpolarizations (∼1 s) that likely regulate this step of the feeding process. Predation attempts by the copepod Acartia tonsa elicited fast (∼20 ms) animal-like action potentials accompanied by rapid contraction of the cell to avoid predation. We have shown that the sensory mechanisms of Favella sp. are finely tuned to the type, location, and intensity of stimuli from prey and predators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of marine planktonic protists to amino acids: feeding inhibition and swimming behavior in the ciliate Favella sp

Feeding rates of the tintinnid Favella sp. on the dinoflagellate Heterocapsa triquetra were inhibited by a number of dissolved free amino acids (DFAAs), with inhibition inversely proportional to the size of the amino acid side chain. The most inhibitory compounds (valine, cysteine, proline, alanine, and serine) reduced feeding to <20% of the control rate at a concentration of 20 μM. Inhibition ...

متن کامل

Lack of accumulation of paralytic shellfish poisoning (PSP) toxins in the tintinnid ciliate Favella taraikaensis feeding on the toxic dinoflagellate Alexandrium tamarense

To clarify the fate of paralytic shellfish poisoning (PSP) toxins in planktonic food webs, toxin contents of the planktonic ciliate Favella taraikaensis feeding on Alexandrium tamarense and of the surrounding seawater were examined in laboratory experiments using high-performance liquid chromatography fluorometric detection. During 5 or 6 d incubation periods in 3 replicate experiments, F. tara...

متن کامل

Escape response of planktonic protists to fluid mechanical signals

The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow, 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required to elicit an escape ranged between 1.8 and 3 s–1. Escape speeds varied between 100 to 150 body length s–1...

متن کامل

Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers

Resource distributions in the ocean are heterogeneous in time and space. Theory predicts planktonic predators may exploit these resource patches by modifying their movements in response to mechanical or chemical stimuli. In the laboratory, we used the protistan predator Oxyrrhis marina to simultaneously quantify changes in predator population distributions on scales of centimeters and hours and...

متن کامل

Trophic interaction between copepods and ciliates: effects of prey swimming behavior on predation risk

The transfer of matter and energy in planktonic food webs is determined by the encounter rate between predators and prey and subsequent attack and capture success. We tested if differences in swimming behavior and escape ability of 2 planktonic ciliates could explain differences in their susceptibility to predation from the calanoid copepod Acartia clausi. We chose 2 similarly sized ciliates, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2016